Flash Like Events

Short Overview

Events System Documentation

Methods description

Use example
Support

Shot Overview

Flash Like Events this is fast and flexible event system for Unity, builded on C# delegates.
It's similar to well known AS3 event system. Just read the method description and you will

understand how it work and how it can help you with your game.


https://docs.google.com/document/d/sNm6BwvOlSIhHon95w7RRFg/headless/print#bookmark=id.kg3tel20iupb
https://docs.google.com/document/d/sNm6BwvOlSIhHon95w7RRFg/headless/print#bookmark=id.yis5ywh2o21w
https://docs.google.com/document/d/sNm6BwvOlSIhHon95w7RRFg/headless/print#bookmark=id.abe6vuspbh2i
https://docs.google.com/document/d/sNm6BwvOlSIhHon95w7RRFg/headless/print#bookmark=id.eaft9kmyt2um
https://docs.google.com/document/d/sNm6BwvOlSIhHon95w7RRFg/headless/print#bookmark=id.ty2misqp8ztm

Event system documentation

There Is two main classes (EventDispatcher and EventDispatcherBase) with allow you to
implement eventing tou your game. They do the same, but EventDispatcher is inherited

from MonoBehaviour and EventDispatcherBase is just a System.Object.

if you want your script to be able to dispatch events you should inherit it from

EventDispatcher or EventDispatcherBase.

Methods description

Here is methods description of EventDispatcher and EventDispatcherBase classes.

// Adds events Llistener do the dispatcher. You may use two types of functions
(with or without additional data) and two types of event identification
(string of int)

public void addEventListener(string eventName, EventHandlerFunction handler)
public void addEventListener(int eventlD, EventHandlerFunctio handler)
public void addEventListener(string eventName, DataEventHandlerFunction handler)

public void addEventListener(int eventlD, DataEventHandlerFunction handler)

// Removes events Listener from the dispatcher.

public void removeEventListener(string eventName, EventHandlerFunction handler)

public void removeEventListener(int eventlD, EventHandlerFunction handler)



public void removeEventListener(string eventName, DataEventHandlerFunction handler)
public void removeEventListener(int eventlD, DataEventHandlerFunction handler)

// Dispatches the event

public void dispatchEvent(string eventName)
public void dispatchEvent(string eventName, object data)
public void dispatchEvent(int eventID)

public void dispatchEvent(int eventID, object data)

public void removeEventListener(string eventName)
public void dispatch(string eventName, object data)
public void dispatch(int eventID)

public void dispatch(int eventlD, object data)

// Remove all Llistners from the dispatcher

public void clearEvents()

If you need to send some data via your events. You should use dispatcher function with
contains data filed. In order to receive this data, your data function should have CEvent as

parameter.

Note: If you dispatch event with additional data, and you have some listeners that do not

have CEvent as parameter thay will be called any way.

Note: Because the EventDispatcher is inherited from MonoBehaviour it can detect what
gamobject is destroyed, and clean up all listeners on destroy. This feature can save you

from dangerous situations when you forgot to remove listener. But | do not recommend to



rely on this feature, it only designed for hedging. Besides EventDispatcherBase not able
to do that.

Here is properties and methods description of CEvent class.

// Event 1id, 1if you are using int event identification. And if you use

string event identification it will contain HashCode of string

identificator.

public int id {get;}

// Name of the event 1if you use string event identification. Contains

string.Empty 1if you are using int event identification

public string name {get;}

// Event data, that you have sended via dispatcher function. Null 1if you use

dispatcher function without data parametr.

public object data {get;}

// Event target. Contains Link to the dispatcher class of this event

public IDispatcher target {get;}

public IDispatcher dispatcher {get;}



// Contains current event target

public object curentTarget {get;}

Note: curentTarget contains link to the class with currently receive the event. target

contains like to the class who has dispatched the event.

You can read more this post to understand difference between them.

// Will stop event propagation, but Listener functions of class with has

received lLast event still be able to get event.

public void stopPropagation()

// Stop Event propagation immediately

public void stoplmmediatePropagation()

Note: You can also read this and this post, to better understand difference between

stopPropagation and stoplmmediatePropagation.


http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com%2Fquestions%2F5921413%2Fdifference-between-e-target-and-e-currenttarget&sa=D&sntz=1&usg=AFQjCNElnVp4Hn3lSN-p3UgKPN3wfQt9Qw
http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com%2Fquestions%2F5299740%2Fjquery-stoppropagation-vs-stopimmediatepropagation&sa=D&sntz=1&usg=AFQjCNGmLn2X932Yx8782IrspZmBbkStgA
http://www.google.com/url?q=http%3A%2F%2Fliguoliang.com%2F2011%2Fflex-event-stopimmediatepropagation-vs-stoppropagation%2F&sa=D&sntz=1&usg=AFQjCNHCZGN11Jeia5YyGe_8EHKbPoA-jw

Use example

Here is small example of button that dispatchers click with click time as data.

To create our button we should create simple mono behavior script. But instead inheriting
our button class from MonoBehaviour we will inherit it from EventDispatcher to give our

button ability dispatch the events. Here is full code of out Button.cs script

using UnityEngine;
using System.Collections;

public class Button : EventDispatcher {

private float w = 150;
private float h = 50;

private Rect buttonRect;
void Awake() {

buttonRect = new Rect((Screen.width - w) / 2, (Screen.height - h) / 2, w, h);

void OnGUI() {
if(GUI.Button(buttonRect, "click me")) {
dispatch(BaseEvent.CLICK, Time.time);

When we click GUI button it will dispatch click event as we see if use dispatch function with

data and sending Time.time variable as event data.

Next we create Class with will create this button and will listen for it event. Lets create our



example listener class and attach it to any GameObject on scene. Here is full code of

ExampleListner script.

using UnityEngine;
using System.Collections;

public class ExampleListner : MonoBehaviour {
void Start () {
//creating our button
Button btn = gameObject.AddComponent<Button>();
//1listening for the event
btn.addEventListener(BaseEvent.CLICK, onButtonClick);

private void onButtonClick(CEvent e) {
//getting click time from event
float clickTimde = (float) e.data;

//printing result
Debug.Log("Button click time is: " + clickTimde.ToString());

This is basic example of building event based solution. You will find a lot more under Plugin

Example folder.



Support

| hope this extension will help you to build and analyze your game architecture.

If you have any questions, problems or suggestions, please contact me anytime via

E-mail: lacost.st@gmail.com.



mailto:lacost.st@gmail.com

